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ABSTRACT

The Prometheus Orthonormal Set (PONS'™)
can be effectively used to compress all com-
mon digital audio signals. This compression
method is effective because of two fundamen-
tal properties, computational simplicity and en-
ergy spreading. Although there exist other
transform coding methods, such as Walsh-
Hadamard, which give compression while limit-
ing the computational burden, we believe that
the energy spreading feature of PONS is unique.
We express this feature in precise mathematical
terms and indicate how it is helpful for compres-
sion.

1. INTRODUCTION

We defined in [1] a “Walsh-like” complete or-
thonormal sequence for L?(0,27) which satisfies
several important properties. Each function in this
Prometheus Orthonormal Set (PONS'™) is piece-
wise £1, can change sign only at points of the

form 2%(2%),1 <k < 2" —1, and is easily com-
putable using a straightforward and fast recursive

algorithm. In addition to these features shared
with the Walsh functions, PONS:

o Is optimal with respect to the global uncer-
tainty principle described in [1]

e Yields the uniform crest factor v/2

e Spreads energy almost equally among all
transform domain bins

We discuss the utilization of these properties be-
low, for applications to one-dimensional digital sig-
nals. Required theoretical properties for multidi-
mensional PONS have been derived and proven.
Next we state several mathematical results, which
give a rigorous foundation to our energy-spreading
concept. Finally, we indicate several possible ad-
vantages of energy spreading for signal processing.

2. ONE-DIMENSIONAL SIGNALS

2.1. Awudio processing

Our first implementation of PONS [3] yields high
quality data compression for audio. For 16-bit
44.1, 22.05, and 11.025 kHz monaural signals we
achieve almost 4 to 1 compression with virtually

no audible difference in sound. The compression
and decompression algorithms operate in real-time
on all modern PCs. For example, it takes less than
3 seconds, including file I/O, to compress or de-
compress a 30-second 22 kHz 16-bit sound snippet
using a Power PC 8100 or a Pentium 100. These
results are to be contrasted with a current stan-
dard, ADPCM, where roughly the same compres-
sion ratio is achieved, but at much higher compu-
tational cost and with somewhat lower quality.

2.2. Spread spectrum communications

A second application of one-dimensional PONS
is in multi-user spread spectrum communications.
The recently developed 1S-95 standard for com-
mercial code-division multiple access (CDMA)
communications involves a two-stage direct se-
quence spreading process, first with a Walsh func-
tion and then with a longer pseudonoise (PN) se-
quence. The energy spreading property of PONS
offers two important advantages over the Walsh
functions in this application:

e The minimal crest factor property of the
PONS sequences provides much more uniform
spreading of the signal’s energy across the fre-
quency band. This increases robustness with
respect to channel effects, such as narrowband
fading and interference, and also reduces spec-
tral features that can be exploited by an ad-
versary in military scenarios.

e Spreading with PONS sequences rather than
Walsh sequences yields signals requiring lower
short-term (“peak”) power to maintain a
specified average transmission power. This of-
fers potential for reducing overall transmitter
power requirements.

Since PONS sequences can be as long as desired
(any power of two), it is possible to use them in
place of long PN sequences as spreading codes. PN
sequences can have arbitrarily long constant subin-
tervals (i.e., consecutive terms all of which are 0 or
all of which are 1), whereas PONS sequences can-
not have constant subintervals of length greater
than 5.

3. ENERGY SPREADING

It is straightforward to describe, in heuristic terms,
what we mean by “energy spreading.” Namely,



when a digital signal of any dimension is expanded
in the PONS basis, each of the terms in the trans-
form domain has approximately the same amount
of energy. It turns out to be natural to mathemat-
ically describe and analyze this property in terms
of the Beurling minimal extrapolation norm.

3.1. Norm estimates and energy spreading

We consider orthogonal transform coding, y! =

Az, where A is an N x N unitary ma-
trix, 1" denotes transposition of matrices, = =
[z1,29,...,2N] is the input signal, and y =
[¥1, Y2, ..., yn] is the output signal. Our main in-
terest is for Hadamard matrices A, which means
all entries a;; satisfy |a;;| = 1/V/N.

Before defining the Beurling norm, standard

norms of N-tuples x which are important for our
discussion are:

o The Fuclidean norm, ||z||g
e The I' norm, ||z||;, and

e The supremum norm (or sup norm), ||z||e

We claim that an inequality

[Az]lco < || (1)

with ¢ small (certainly, small with respect to VN
and, preferably, small like an absolute constant)
is a good index of energy spreading, and we shall
now clarify and amplify this assertion.

Let S denote a certain class of test signals, to
be defined more precisely below. If no restrictions
were put on 5, then all we could say is

[ Az]|oo < [IIAII] - [l2[l

where |||A||| denotes max; Z;y:1|aij|a and this

quantity is v N for a Hadamard matrix. Thus,
in place of (1) we have the universal (but trivial)

bound
| Az]|0e < VN||2]|so,

which holds for all Hadamard matrices A and all
input signals z.

For any signal (N-tuple) y, Cauchy’s inequality
yields

lylly < VN|ylle. (2)

Suppose z has “perfect energy spreading,” say
|z;| = 1 for all 4; then ||y||g = ||Az||g = ||z]|g =
VN so (2) says ||y]li < N. For equality to hold
here, it is necessary and sufficient that |y;| = 1 for
all 7, i.e., that y has also “perfect energy spread-
ing.” Hence we have the following criterion:

Given a class of test signals 5, each of which
has all entries of modulus 1, A preserves perfect
energy spreading for this class of inputs if and only
if ||Az||; = N,forallz € §,and A has good energy
spreading qualities if inf,eg||Az||1/N is “large,”
that is, close to its theoretical maximum value 1.

Now, for any signal y,

Iyl = D 1wil* < llyllee - N1yl

hence for y = Ax:

| Az|%
[Azfly >
| Az]|oo
N
= res
Az |o
Thus,
Azl 1 [[2]]co
> = z€S.  (3)

N [Azflec  [[A%]lo

This shows our energy-spreading parameter
infzes||Az|[1/N is close to 1 if [|Az||e < ¢||2]|c
holds for all z € S, where ¢ is a constant (bigger
than, but) close to 1. Thus, we see the importance
of estimates of type (1).

3.2. The Wiener norm

For a bounded complex measure p on the real line
R, its Fourier (or Fourier-Stieltjes) transform, de-
noted F),, is defined by

()0 5= [ du(w). (4)

Definition 1 For a complex valued function M(t)
on R, its Wiener norm, denoted |M||w, is the to-
tal variation V(u) of the measure u, if one ex-
ists, satisfying F,, = M. If no such pu exists,
[ M]|w = +o0.

It is well known that, if such p exists for a given
M, it is unique, so | M||w is well defined. In par-

ticular, if f , the Fourier transform of an integrable
function f on R, is absolutely integrable over R,

then || fllw = [, |f(w)| dw.

An important fact, obvious from (4) is:

sup [M(1)| < [[M[]w. (5)
teR

3.2.1.  Some examples

For M(t) = €, a € R, M is the Fourier trans-
form of a unit mass at w = —a, so the Wiener
norm of a pure harmonic oscillation €*** is 1. Like-
wise the W norm of a superposition of these,
M(t) = Sh_,ape®t is 3 |ag|. In particular,
the sinusoid sin at has Wiener norm 1.

Another interesting example is when M is pos-
itive definite (in the sense of Bochner), that is
M = F, where u is non-negative. The total

variation of p is [dp(w) = M(0) (from (4)), so
||M|lw = M(0) for such functions. For example,
in all the cases M(t) = e, eIl (1 + (%)~ or
M (t) =“the triangle function”:



Figure 1. Graph of M (1).

= -l ={ 5"

[t <1
; ltf>1
we have | M||lw = 1. In particular, equality holds
in (5) in these cases, although generally the W-
norm is much larger than the supremum norm.

It is also easy to verify from the definition: the
W-norm does not change if we subject M to an
affine change of variables: M (at 4+ b), for fixed
a >0 and b € R, has the same W-norm as M.

3.3. The Beurling minimal-extrapolation
norm

Let () be a complex-valued function defined on
some nonempty subset £ of R.

Definition 2 The Beurling minimal extrapola-
tion norm of ¢, ||¢||MmE, is the infimum of | M ||lw
over all functions M defined on R which extrapo-
late ¢, that is, satisfy M(t) = ¢(t), t € L.

Remarks 1 A minimizing choice of M may or
may not exist. Also, it can happen that no choice
of M exists which is the Fourier transform of a
bounded measure, and in this case ||¢||me = +00.

Note that, in case E =R, ||¢|lme = [|¢llw.

Example 1 £ = (0,00), ¢(t) = e~*. Here
llellme = 1. The extrapolation is M(t) = e~ 1!l

Definition 3 For an N-tuple v = [y, 22,...,2ZN]
its ME-norm, denoted ||z||mg, is ||¢||Me where ¢
is the function defined on the set {1,2,...,N} by
p(n) = zn.

Example 2 N = 4, 2 = [1,-1,1,—1]. Here
lzllme = 1.

Indeed, we can extrapolate ¢ by M(t), a pe-
riodic “sawtooth” function as shown in Figure 1.
Here |M|lw = 1, either by direct calculation of
the Fourier coefficients of M, or by utilizing that
—M is positive definite.

Example 3 If ¢(t) is a linear function on [a,b],
then ||¢llme = sup |¢(1)| (= maz[d(a)],[4(b)]).

3.4. PONS, the Beurling norm, and en-
ergy spreading
As noted in 3.1,

1Az]lso < VN|2 oo, (6)

which holds for all Hadamard matrices A and all
input signals z. Moreover, it is easy to see that
there are signals 2 for which equality holds in (6).
However, for a fairly broad class of signals z, a
significant improvement of (6) is possible, in the
case where A is the PONS matriz. This improve-
ment is embodied in the inequality

[9lleo < V2l2lluE

Since, for a wide class of signals z, the ME norm
is equal to the sup norm, or only exceeds it by
a modest factor, it is clear that (7) represents in
such cases a significant improvement of (6). Ac-
tually, (7) does not tell the whole story. A far-
reaching extension of (7), based on a deeper prop-
erty inherent in the structure of the PONS ma-
trix, implies that, for a wide class of signals (for
example, all z where z,, = £1) with only a small
number of sign changes, even though ||z||mE may
be large, [|y||s in fact remains bounded; thus (7)
may be essentially strengthened for this kind of
signal. The following theorems and examples il-
lustrate this point.

for PONS (7)

Theorem 1 If z is a signal consisting of £1 en-
tries, and exactly r — 1 sign changes, ils PONS
transform satisfies

Iyl < 34/6/5v/7. (8)

Theorem 2 Let x = [zy,...,2N] be a signal, and
split it into r blocks of consecutive terms whose
successive lenglhs are Ay, g, ..., A, (thus, A; > 1

and y7i_1 Aj = N). We may write this symboli-
cally as
z =[zWM]z@ .. |z(7]
where =) is the " block.  (Thus, z(1) =
[xlv L2, 00, .T/\l], etc.)
Let K; denote ||| yg. Then the PONS trans-
form y! = AzT satisfies

- 1/2
uyuoos:z\/ﬁ%(;ﬁ?) )

Example 4 Suppose x consists of a block of sinu-
sotdal terms at one frequency, followed by a second
block of a different frequency, thus:

v = [a'|2"]
where
' = J[acos(wy +b),...,acos(kwy + b)]
a" = [ecos(wy +d),. .., ccos(lwy + d)]
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Figure 2. An example on [a,b] of f(¢) consisting of
6 linear pieces (r = 6).

where a, b, c,d,wy,wy are arbitrary and k+ 1= N.
As ||2'||me = @ and ||2"||me = ¢, (9) yields

lylloo < 31/6/5v/a® + 2.

Further pursuit of this idea leads to an inter-
esting and probably difficult new problem in har-
monic analysis: to optimize the estimate (9) for
a given signal z. In other words, How does one
break x into blocks of conseculive terms, such that
the sum of squares of the ME-norms of these blocks
is minimal? What 1s a good upper bound for this
minimum, e.g., in terms of other, readily com-
putable parameters?

Example 5 Suppose z is a signal oblained by
equi-spaced sampling of a piecewise linear function
f(t) consisting of r (continuously) formed linear
pieces (see Figure 2.) Then, the PONS transform
y of © satisfies

l9lleo < 3\/6/5v7sup JO] - (10)

What is remarkable about (10) is that a sup-norm
appears on the right (at the cost of the \/r factor).
The ME-norm of the signal z (or the function f)
will in general be much larger than the right side
of (10), especially if r is small.

Estimates such as those given above are very
finely tuned to specific structural features of the
PONS transform, and no other forms of orthogo-
nal coding known to us have such properties. In a
rough qualitative way one can say that if z and 2’
are signals with which the PONS transform copes
well (such as pure harmonic, purely linear, purely
quadratic, etc.), then it copes well also with the
signal consisting of some portion of z followed by
some portion of 2’ (and likewise for a composite
of r < N “good” signals). The transient effect
of abrupt switching, at an arbitrary instant, from
z to 2’ does not elevate the output amplitude by
much (e.g., switching from samples of coswit to
samples of coswyt can only bring in an amplitude

factor of /2 in the output, regardless of the values
of wy, wy).

3.5. Advantages of energy spreading

In addition to the advantages for spread spec-
trum communications given in 2.2, PONS energy
spreading yields the following desirable properties:

o Added security, in that it makes a signal look
like white noise

e Low crest factor array and optimal uncer-
tainty principle bounds [1]

e Near optimum coding gain for sufficiently
wideband input (independent of input statis-

tics or spectrum)

e Quantizes all transform domain coefficients to
the same precision

o Aliasing errors are canceled to the same pre-
cision in all transform domain subspaces

¢ Quantization errors appearing in the recon-
struction are approximately Gaussian (as a
linear sum of independent uniform errors)

e Eliminates bit allocation computations
e Good performance over unreliable media

To explain the final item above, suppose there is
some kind of bursty noise which substantially de-
grades transmission at isolated and unpredictable
times. No matter which PONS terms were lost be-
cause of such noise, there would be only very grad-
ual signal degradation (i.e., slightly more degra-
dation with each term that is lost). For all
other known transforms (wavelet, DCT, Walsh-
Hadamard, etc.), if low energy terms were lost be-
cause of such noise there would also be very little
signal degradation, but if even one high energy
term was lost the degradation would probably be
quite substantial.

Also, PONS whitens any “signal,” including
“noise.” Thus, if the noise energy is less than the
energy of the desired signal, under quantization
(of the PONS coeflicients) the noise energy should
be eliminated before the signal energy.
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